Presented by
Guillaume Le Goc
Supervised by
Georges Debrégeas
Raphaël Candelier
October 1st 2021
"Dynamic, interconnected communication loops distributed across body, brain, and time"
[Kanwal et al., Integr. Comp. Biol. 2021]
Going for a party ?
Yay !
Nope
Mood
All good
Stressed
"Dynamic, interconnected communication loops distributed across body, brain, and time"
[Kanwal et al., Integr. Comp. Biol. 2021]
Stress
Hunger
Arousal
Fatigue
...
[Kanwal et al., Integr. Comp. Biol. 2021]
"Dynamic, interconnected communication loops distributed across body, brain, and time"
[Kanwal et al., Integr. Comp. Biol. 2021]
Stress
Hunger
Arousal
Fatigue
...
[Kanwal et al., Integr. Comp. Biol. 2021]
[Lister et. al., Development 1999]
Small & transparent vertebrate,
Mutant & transgenic lines,
Rich behavioral repertoire
Calcium reporter expressed in nearly all neurons : brain-wide activity recordings
[LJP]
100µm
5-7 days post-fertilization larvae
[Haesemeyer et. al., Cell Syst. 2015]
Map of heat responsive neurons
Timescale of heat perception
[Haesemeyer et. al., Neuron 2018]
Zebrafish in the wild : 18-38°C
Study the effect of uniform temperature on behavior & brain activity
Define, measure & study internal states
Introduction
Summary & perspectives
Introduction
Summary & perspectives
[Gallois & Candelier, PLoS Comp. Biol. 2021]
Offline tracking with FastTrack
Discrete swim bouts
Discrete swim bouts
Short-term kinematic parameters
Interbout interval
Discrete swim bouts
Short-term kinematic parameters
Interbout interval
Displacement
Discrete swim bouts
Short-term kinematic parameters
Interbout interval
Displacement
Turn angle
3 short-term kinematic parameters
Interbout interval
Displacement
Turn amplitude
+ 1 trajectory-based parameter
Turn probability
[Le Goc et. al., BMC Biol. 2021]
10 batches of 10 fish, 30 minutes
5 temperatures :
T = 18, 22, 26, 30, 33°C
[Le Goc et. al., BMC Biol. 2021]
[Le Goc et. al., BMC Biol. 2021]
[Dunn, Mu et. al., eLife 2016]
[Dunn, Mu et. al., eLife 2016]
[Karpenko et. al., eLife 2020]
[Le Goc et. al., BMC Biol. 2021]
[Karpenko et. al., eLife 2020]
Ternarized reorientation
Left turn → +1
Forward → 0
Right turn → -1
[Le Goc et. al., BMC Biol. 2021]
[Karpenko et. al., eLife 2020]
Ternarized reorientation
Left turn → +1
Forward → 0
Right turn → -1
[Le Goc et. al., BMC Biol. 2021]
5 thermally modulated parameters :
Sufficient to describe trajectories
[Le Goc et. al., BMC Biol. 2021]
5 thermally modulated parameters :
Nicoguaro CC BY 4.0
[Le Goc et. al., BMC Biol. 2021]
[Le Goc et. al., BMC Biol. 2021]
Single-fish experiments, 26°C, 2h long, N = 18
[Le Goc et. al., BMC Biol. 2021]
1 color = 1 fish
T = 26°C
[Le Goc et. al., BMC Biol. 2021]
Behavioral modulation time scale ~ 30min
Fish #13 trajectories
Larval zebrafish :
Difficulty to be in a stationnary regime
Temperature :
Introduction
Summary & perspectives
T = 18, 22, 26, 30, 33°C
30min recordings, ~ 6 volumes/s
~ 50 000 neurons/recordings
[Dunn, Mu et. al., eLife 2016]
[Wolf et. al., Nat. Commun. 2017]
Anterior Rhombencephalic Turning Region
Tuned with turn direction (Dunn, Mu, et. al. eLife 2016)
Tuned with eyes orientation (Wolf, et. al., Nat. Commun. 2017)
[Wolf et. al., Nat. Commun., 2017]
Bilateral circuit with persistent activity
[Wolf et. al., Nat. Commun. 2017]
[Karpenko et. al., eLife 2020]
[Wolf, Le Goc et. al., in prep.]
Random telegraph signal
Behavior
ARTR
[Wolf, Le Goc et. al., in prep.]
Behavior
ARTR
[Wolf, Le Goc et. al., in prep.]
Behavior/Neural activity consistency
[Wolf, Le Goc et. al., in prep.]
With S. Wolf, S. Cocco & R. Monasson (LPENS)
[Wolf, Le Goc et. al., in prep.]
?
[Schneidman et. al., Nature 2006]
local fields
coupling between neurons i and j
[Wolf, Le Goc et. al., in prep.]
Less constrained model (max. entropy)
[Wolf, Le Goc et. al., in prep.]
Real
Synthetic
Monte Carlo Metropolis Hastings sampling of
[Wolf, Le Goc et. al., in prep.]
[Wolf, Le Goc et. al., in prep.]
[Wolf, Le Goc et. al., in prep.]
Energy landscape
defines dynamics
ARTR thermal modulation consistent with behavior despite immobilisation
Time-independent, energy-based model reproduces neural dynamics
Persistent activity can emerge from the network
Model captures persistence times variability and thermal modulation
Introduction
Summary & perspectives
Georges Debrégeas
Raphaël Candelier
Volker Bormuth
Ghislaine Morvan-Dubois
Sophia Karpenko
Geoffrey Migault
ulie Lafaye
Natalia Belén Beiza Canelo
Thomas Panier
Benjamin Gallois
Fish facility staff
Abdelkrim Mannioui
Alex Bois
Stéphane Tronche
Marie Breau
Marion Baraban
Rémi Monasson
Simona Cocco
Sébastien Wolf
Hugo Trentesaux
Hippolyte Moulle
Sharbatanu Chatterjee
Mattéo Dommanget-Kott
Alexandre Nauleau
Antoine Hubert
Leonardo Demarchi
Malika Pierrat
Anissa Zerouklane
Georges Debrégeas
Raphaël Candelier
Volker Bormuth
Ghislaine Morvan-Dubois
Rémi Monasson
Simona Cocco
Sébastien Wolf
Thanks !
Sophia Karpenko
Geoffrey Migault
ulie Lafaye
Natalia Belén Beiza Canelo
Thomas Panier
Benjamin Gallois
Hugo Trentesaux
Hippolyte Moulle
Sharbatanu Chatterjee
Mattéo Dommanget-Kott
Alexandre Nauleau
Antoine Hubert
Leonardo Demarchi
Malika Pierrat
Anissa Zerouklane
Fish facility staff
Abdelkrim Mannioui
Alex Bois
Stéphane Tronche
Marie Breau
Marion Baraban
10 x 10 fish, 45min
Z-projected trial-averaged mean reponse of 1 fish
hot (n=8)
cold (n=12)
Qualitative response map
[Wolf, Le Goc et. al., in prep.]
Real
Synthetic
[Wolf, Le Goc et. al., in prep.]
[Wolf, Le Goc et. al., in prep.]